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In this paper we excavate the foundations of best-approximation theory with
the tools of Bishop’s constructive analysis. We prove a general theorem on
existence (computability) of best approximations from a given finite-dimensional
linear subspace of a normed space E, and illustrate this with the case where E is
uniformly convex. The second part of the paper deals with the characterisation
and existence of minimax polynomial approximations to elements of CJ0, 1],
and with the pointwise continuity of the minimax approximation mapping on this
space. In particular, the main application of our general existence theorem answers
affirmatively the long-open question: Is there a constructive proof of the existence
of minimax polynomial approximations?

1. INTRODUCTION

As should be familiar to every advanced undergraduate in mathematics,
the theoretical foundation of the numerical analyst’s interest in approxima-
tion theory is provided by the theorem

a finite-dimensional linear subspace X of a normed space
E over R is proximinal in E—that is, (*)

V(/GEerX diSt((/, X) =1ila —f’

What is remarkable about this theorem is that, although it supports a vital
branch of computational mathematics. it admits of no known constructive
proof: to be exact. not only do the classical proofs of (*) beg the question of
the computability of dist(«. X). but also they deduce the “existence’ of the
best approximation £ to « in X from the essentially nonconstructive proposi-
tion that a continuous. real-valued function on a compact space attains its
infimum [8, 8.3.2].

In this paper. we investigate the problem of existence of best approxima-
tions with the techniques of Bishop’s constructive analysis. (For general
background to constructive mathematics. we refer the reader to [2]: a wider,
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but less up-to-date, coverage of the subject is found in [1].) It is our belief that
constructive mathematics, with its insistence on numerical content and
computational method, may have considerable importance in the develop-
ment of numerical analysis. at least in theory. We certainly hope that the
questions raised in this work will lead to further investigations in the subject
of computability of best approximations. and the constructive approach to
numerical analysis in general (cf. [5. 6]).

To return to (™). it is fortunate that the computability of dist(«. Y’} can be
demonstrated as a simple consequence of a result of Bishop [I. Chap. 4.
Proposition 13]. Moreover. as we shall show below (2.1). this can be derived
also in an elementary manner by an adaptation of a well-known classical
proof of {7) [7. pp. 78-80]. It follows that the constructive content of this
classical proof is precisely the existence of dist(«~. X). and not its attainment
at some point ¢ of X: indeed. we are tempted to believe that the existence of
such £ is an essentially nonconstructive proposition.

To reassure any numerical analyst who may be distressed by this last
possibility, we point out that there are commonly occurring situations in
which the existence of best approximations can be established by constructive
means. In particular. one corollary of our main general result (2.2} is that, if
each finite-dimensional linear subspace of £ contains at most one approxima-
tion to a given element of E. then all finite-dimensional subspaces of E are
proximinal. Moreover. in the general case. the computability of dist(-~. X)
means that we can compute an approximation to « in A" which is as close to
a best approximation as we require (for example. to the highest degree of
accuracy of any available computer). At the same time. we have no guarantee
as yet that this approximation does not jump discontinuously as we try to
improve its accuracy.

2. EXISTENCE OF BEST APPROXIMATIONS

Throughout this paper, all normed linear spaces are over the real-number
field R. We shall say that a normed space X is finite dimensional if there exist
finitely many elements ¢, ..... e, of X and linear functionals ¢;..... é on X,
such that

X = : di(xye, {xe L)
=1

be,) =0 (L jok oo j=k),

and each ¢, is bounded—that is, we can compute ¢ ~- 0 such that ¢, (x) &
¢+ x !for each x in X. The number r of elements of the basis {e, ..... e,) of X
is then called the dimension of X, and is independent of the basis in question.
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We write X = span{e, ,.... ¢,} when there is no likelihood of confusion as to
the linear functionals ¢, .

By a compact space we mean a metric space that is totally bounded and
complete. The closed unit ball of a finite-dimensional normed space is
compact, as is its boundary. If fis a uniformly continuous mapping of a
compact space K into R. then sup fand inf f are computable. although not
necessarily attained: for all but countably many real numbers x > inf £, the
set {x € K: f(x) < a} is then compact.

A subset S of a metric space E is located in E if dist(x, S) is computable for
each x in £. Every compact subset of a metric space is located.

2.1. PROPOSITION. A finite-dimensional linear subspace X of a normed
linear space E is located.

Proof. Let{e, ...., e,} be a basis of unit vectors of X, » € E and define

. F A2
LY ke g A = ( Y A :'-’)
h=1 w21

for each A =(A,,...,A) in R". Then , |, is a norm on X; so that, by the
equivalence of all norms on a finite-dimensional linear space, there exists

g’ > 0 such that u'' x|, <{ x | for each x in X. Thus

0 <p lp= inf;i Z A TAERT AL = 1:.
k=1
For each r > 0, define

dy —inflls— Y Ney tAeR. A <ol

/ h=1 \
Then. choosing in turn r > | so that d), <<ru — "« | and A in R* with
I"A > r. we have

=Y Neyh =AY A Aey — o
k=1 k=1
Zrp—|
s dl
>=d, .

[t is now clear that dist(«, X) is computable, and equals 4, . ||

In this last proof. a more natural classical approach to the positivity of
uses the proposition that a uniformly continuous mapping of a compact



276 DOUGLAS S. BRIDGES

space into the positive reals has positive infimum. The constructive validity
of this proposition remains an open problem (cf. [3, Sect. 4: 4]).

Another point of divergence between classical and constructive mathe-
matics arises in connection with the comparison of real numbers: as the
propositions

YxeR(x _ 0- x> 0vyx=0)
and
VxeRVyeR(x < rvx=y)pvxz>y)

are both essentially nonconstructive. constructive analysis must be done
using such acceptable substitutes as

YVyeR({(x >0 =0=1 = x<0)
and
VXxeRVyeRVeR(x <y~ x<zvI<y)

(see Chapter | of [2] for details). In particular, we cannot assert that
Vae EVxe X (a — x| > dist(a, X) v | e — x| = dist(a, X)).

To get round this obstacle, we say that « € E has at most one best approxima-
tion in the finite-dimensional subspace X of E if

max(ie — x,1.a — x'|) > dist(«. X)
whenever xe X, x’ e Xandi|x — x" " > 0.

With this definition, we come to our main general result

2.2. THEOREM. Let {¢,....,e,} be a basis of the finite-dimensional linear
subspace X of the normed space E over R. Suppose that, for each k €{1...., v},
each x in E has at most one best approximation in span {e, ...., e,}. Then X is
proximinal in E.

Proof. We proceed by induction on k. Let « € £, d = dist(«, span {e¢;})
and ¢(A) = |« — Ae; | (A € R). We first observe that, if 7, > 1, > 0 and

S ={AeR: ¢)) < d+ 1]
is compact for & = 1, 2, then (as ¢ is uniformly continuous)
#(inf S;) = d -+ 1, = ¢(sup Sy) (k=1,2).

Hence
inf S; <inf S, <sup S, <supsS,.

Also., S, C S, ; and, as S, is convex, S, = [infS,.,supS;] (k =1,2).
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We now construct a sequence (x,),3, of positive numbers converging to 0,
such that, for each n,

Ay ={AeR: &) < d -+ a,)
QR A <le [ (all + d—ay, $N) <d— x,)
is compact. Then
A(n — 1) C A(n) = [inf A(n), sup 4(n)]

and
inf A(n) < inf A(n + 1) < sup A(n 4- 1) < sup A(n).

Classically, we could now argue that the decreasing, minorized sequence
(sup A(n)),> converges to its infimum M, and hence that ||z — Me, || =
$(M) = d. Constructively, we cannot use the Least Upper-Bound Principle
(1. pp. 4-5], and so we adopt the following argument.

We construct a strictly increasing sequence (v;),»; of positive integers such
that

sup A(vi.y) — inf A(v_;) < (8)* (sup A(1) — inf A(1)) k=1).
Having found v, = 1,..., v;,, we set
my, = inf A(v;), M, = sup A(v;),
and compute in turn &, v, so that
Hmy + M) < & <my + §(My, — my),

Viar > v and @) > d — %, - (These computations are possible as « has
at most one best approximation in span{e;}.) We then have either

¢ < inf A(viyy) < sup A(v.q) < M,
or
my, < inf A(v.,) <sup A(vy,) < §:

whence, in either case,

sup A(vyy) — inf A(v;.y) < 5(Mi — my)
< (3)* (sup A(1) — inf A(1)).
This completes our inductive construction.

It now follows that there exists { with inf A(v,) < { < sup 4(v,), and
therefore ¢({) < d + a, , for each & > 1. Hence &) < d, and so

e — ley | = $(0) = d = dist(«, spanfe}).
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Now let | Tk .1 — 1. and suppose that we have proved 1 - span
{ey ..., ¢;} proximinal. Defining a new norm and equality on E by

x o dist(x, 1)
and
XNty = v — N\ =20,

we note that
infiegy ¢ — ey | = infypinf,ey | « — Aepy — ¥
= dist(«, span{e, ...., €;.4}).
Let A, , A, belong to R with ' A, — A, = 0, and choose 3, . v, in } so that
« — Ney_y — 1 =distle — Ae, ., V) (;=1.2).
Then
(Mg + ¥1) — (e — 1)l = dist((h, — A ey, 1)

A — A, Cdist(e,_; L )
-0,
whence
MaXjop,e @ — A€y 1 = MaX;_y, 0 — Nery — 3
>~ dist(«, spanie, ,..., €.4})
=infiea @ — A g
Thus « has at most one best approximation in the one-dimensional subspace

span{e,_,} of (E,!'). As « € E is arbitrary. it follows from the first part of
the proof that there exists { in R with

dist{(e« — fep_1 . Y)="'a — le,;
= dist(a. spanf{e, ..... Crtt).
By our inductive hypothesis, there exists # in } such that
e — ey — /7 =dist(e — Le,, Y).

Clearly, £ — {e;_, is a best approximation to ~ in spanfe ..... ¢;:_1t and our
induction is complete. Taking k == v — 1. we immediately obtain the proxi-
minality of X. ||

Note that the best approximation to # in X in 2.2 is unique.
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3. FIRST APPLICATIONS OF THE EXISTENCE THEOREM

In order to apply 2.2, we define a normed space E to be uniformly convex if,
for each ¢ > 0, there exists 8 > 0 such that 'I(x <+ ) < & whenever
'x =iyp'=land! x —yi = e

3.1. THEOREM. A finite-dimensional subspace of a uniformly convex
normed space E is proximinal.

Proof. 1n view of 2.2, it will suffice to prove that each element « of E has
at most one best approximation in a given finite-dimensional subspace
Xof E. Let x, x' belong to X, with 0 << x = x — x"il. With d = dist(«, X).
choose r in 10, 1[ so that ;' i(s — )i <r whenever "s' == |¢ir =1 and
| s — 1] > %/3(1 — d). Suppose that

max(ie — x L. a — x|} < B = min(d + x/6, x/6r).

Were d << x'6, we would have

Ix—x" <lae —x +ia—x"!
< 2(d — «/6)
< X,

a contradiction. Thus d > ~/6 > 0. With

y= a—Xx|"T1t—la—x" 1>12ria
we now have
g —x" Y a—x)+ ¢ —x""1(e — X}

=vyia—(yl a—x'x+ylla—xTX)

= yd

> 2r
whence

te—x Yo —xX)— a—XxX Tl — X< ~d).

1t follows that

’ -
=

x—X Llx— (e —dl « —x (s — X)),
—dVvae —x Y a—x)—'a—x e — X
+ix — (e —d «— x'(a — X))
L'dia—x 71— INa — x) + dx/3(1 — d)
+idla— X — e — X

640/28/3-7
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(v —x —d)y- 3 (a«—x" —-d)
RN v3 - W6

= A,
This again contradicts the definition of . Hence
max( ¢« —x . ¢« — X )y B -0,

and « has at most one best approximation in X. |

Particular cases of interest are those where £ is a Hilbert space or an L'-
space (1 < p < o): the uniform convexity of the former is comparatively
trivial to establish, while that of the latter is proved in the Corollary to
Theorem 1. Chapter 9 of [1].

We should point out that the proximinality of a finite-dimensional sub-
space X of a uniformly convex normed space E can be proved without appeal
to 2.2, by an argument akin to that used in 2.3 to prove that an element « of
E has at most one best approximation in X (cf. [I. Chap. 9. Exercise 5]).

4. CHARACTERIZATION OF MINIMAX POLYNOMIAL APPROXIMATIONS

Perhaps the most interesting example of a best-approximation problem in
which E is not uniformly convex. but the conditions of 2.2 are satisfied
classically. is that of minimax approximation by polynomials. i which
E - C[0, 1] (with the usual “supnorm™) and X = span{l. ... x"]. the
space of polynomials of degree at most n. The application of 2.2 to this
situation appears to require a detailed analysis of the constructive content of
the classical characterization of minimax polynomials. obtained by Borel and
discussed in Chapter 3 of [7]. Incidentally. it is easy to see that the classical
characterization is essentially nonconstructive. even in the simplest case
n = 0. as it entails that any element of C[0, 1] attains its supremum and
infimum.

Throughout the remaining sections of this paper. « will be an clement of
C[0. 1]. » a nonnegative integer and. for each integer n =~ 0, X', the linear
subspace span{l...., x*} of C[0. 1].

Let pe X, and € ~~ 0. By an e-alternant of « and p. we mean an ordered
pair comprising an integer j<{0, 1} and a strictly increasing sequence
(771 oo 9.2) of 1 — 2 points of [0. 1] such that

(— 1 (o — pX) w—p — € (k — 1. - 2).

If also 0 <. € <2 « —p and nei{0....vi. we define an (n, e)-prealternant
of #» and p to be an ordered pair comprising an integer j < {0. 17 and a strictly
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increasing sequence 0 = x; <C ¥, << ** <I Xg,_y = | of 2n — 4 points of
[0. 1] such that

(e —-p)xs) >  a—p' —¢
(117 (= PoXamss) > "t ~pi— €,
(-DF (e —pAx,) = a—pl—e (r=2k—1,2k—2:k=1..,n
and

sup{ (¢ — pHx)  Xop KX L Xy ! < v —p (k=1..n=1

4.1. LEMMA, Let pe X, and 0 < e <, a — p . Then either' « —p' >
dist(¢. X,) or there exists a (0, €)-prealternant of « and p.

Proof. Let M. m be respectively the sup, inf of » — p over [0, 1]. Either
e —p .. -min(—m, M) or min(—m. M) = |« —p — e In the former
case. we choose » so that

0< x<o—p — min(—m. M)).

Then,if ‘e —p ' > —m(when e« —p = M), weset g=—p—r€X,: s0
that, for each x in [0, 1].
(a—q)(x) < a—p — a
(g — a)Xx) <l a —sup{(p — «}x) 1 xe[0, 1]
= x — M

<t —pl—a,
and therefore
e —p = a— g — x> dist(a, X,).

We obtain the same inequality in the case « — p' > M by taking ¢ =
p—

On the other hand, if min(—m, M) >~ « — p' — ¢, we choose & 5 in
[0. 1] so that

(« hﬁ)(f) e —p — €
and
(p—am) >« —pl ~<

As « — p is uniformly continuous, we may assume that ¢ < n. We now
compute o; so that

pa —p — e < a <(a ——p)(f)
and
Ky == {xe[0, 9] : (@ — p)x) = )
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iscompact. With v, — 0, v,  sup A . we then compute », so that

a—p €\, p o a)y)
and
K =ix=s[nogl(p —aXx)

is compact. To complete the construction of a (0. e)-prealternant of « and p.
it only remainstosetj - 0. v, infK,andx, =1. |

4.2, LemMA. Let me{0,...v — 1, and 0 << ¢ == « — pi. Suppose that
there exists an (m, e)-prealternant of « and p. Then either '« — p'| ~- dist
(a. X.) or there exists an (m — 1. €)-prealternant of « and p.

Proof. Let (j.(t; ..... 1,..;)) be an (m, e)-prealternant of « and p. and
define
B MAaXgy e SUPH— 1V (0 — p)x) 1 1y <5 X < by

Either .« —p .-porp -, ¢« —p — e In the former case. choosing
x > 0 so that
max(u., max;_; g SUp{(e — pUXY @ty v X <ty y)) <law —p| — 2x,
we set

-1

B =27y ﬂ (fa71 — tap)-
ke

oo Mta - tyly) (k = l... m A1)

and

-

g(x) - p(x) — (—1)¥ HL —x)  (xe[o.1)].

Then B >0 and g€ X,,, C X,. Supposing that .« —q- -' a —p. —3,
we choose { in [0, 1] so that

(¢ —gXOy -1« —p — 8.
Then

(0 —pUD) = (« —gUD — (p — gXQ)

m-1

ﬂ\[)'—B—,\H
A=l

el —p — 2

©max sup{ (v — pUXY ity T X <ty g
A=
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From this and the uniform continuity of « — p on [0, 1], it follows that there
exists [e{l,..,m + 2} with £,;_, <{ <1, . Noting that (—1)* 1['[kmj1
(zz — ) > 0, we have

(=g — a)(&) = (=) (g — p)O) — (=D)7(p — 2)(])

m+1

<(—1)a H (@G—0—1a—p:
m+1
L —x H Yty — ) + 1 a — p|,
k=1
=ha—pl—§

Hence (by our choice of {)
(=17 (@ —g)) >lle —pl — B,

and so

(=1 (a — p)(§) = (=D (e — g} + (—=1D)(g — pXD

>la—ph—B=(=1)x [I (=0
2a—pl—2a
> u.
This contradicts the definition of u. Hence we must have
Ve —ql <ija —pi— B <la—p",

and therefore '@ — p|! > dist(«, X,).
On the other hand, if » > il @« — p,; — ¢, we choose in turn k, o, so that

le —pil — e <x <sup{(—1)F7(« — pAx) : tyoy <X K tf
and
Ky = {x€[topoy s tor] : (1) 7 (¢ — p)X) = o}
is compact. If 2 < k <<m 4+ 1, we set 3, = inf K| , 3 = sup K, and (using
the properties of an (m, €)-prealternant, and the uniform continuity of « — p)
observe that #,, ; <y, < )3 <ty and
(=D (a = p)y) = (=17 (a—p)y;) = oy > ja —pli — e

Now choose «, so that

ta —pli— e <oy <min((— 1) (@ — p)tg-1), (— D7 (@ — p)(tar))
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and the sets

NE o 1a] s (—1DF e — p)x) = xb
Ky cxel oty i (=1 e = p)y) o

are both compact. With 3 - sup K, .y, = inf K, , the uniform continuity
of « — p ensures that

fop g <Ny ~D ¥y <y LYy <y
and
(=0 Ha — p)yy) = (=D —p)y) = v~ @ —p! — e

To complete the construction of an (m - 1. e)-prealternant (/. (x.....
Xay_g)) Of @ and p. it only remains to define

X, - f, (r=1,..2k— 1),
Nopojox =¥ (s =1.2,3.4),
Xay,—6 = I
and, if k <<m — I.
Nopoges == Lot s (s = L. 2m — 2k - 3).

If k = 1, we set x, = sup K, . note that x, < £, . and choose x, so that

a—p —elxy < (=1 (7 — pt)

and

A=dxelx,. ) (=1 (e — plx) - )
is compact. Then, setting v, = l. v, —infA4 and x, . =1, (s = 1.
2m — 3). we easily show that (/, () ..... Xu.,_g)) 1S an (m — 1. €)-prealternant
of « and p.

The case k == m — 2 is handled in a similar manner. ||

4.3. ProposiTioN. If pe X, and 0 << e <''a — p . then either o —
p > dist(«. X,) or there exists an e-alternant of « and p.

Proof. Applying 4.1, and then 4.2 repeatedly. we see that either «~ —
p . > dist(e. X,) or there exists a (v. €)-prealternant (/. (¢, ..... ts,_1) of «
and p. In the latter case, choosing points n; = [t,;, ;. £,;] so that

(— 1YY e —p)oyy) - o« —p — € (k —lo.,v 2.

we obtain an e-alternant (1 — /. (%, ..... n..2)of wand p. |
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We are now able to derive the constructive analog of the classical charac-
terization of minimax polynomial approximations.

4.4. THEOREM. A necessary and sufficient condition that b € X, be a mini-
max approximation to a in X, is that. for each € > Q, there exists an e-alternant
of « and b.

Proof. Given € >0, we have either e >"'« — b or l v — b > 0.
In the former case. as

e —b —e<—te<— a—b £ (« —b)x) (xe[0, 1],

if (91 .--.- Myp2) Is any strictly increasing sequence of v — 2 points of [0. 1],
(0, (1 ,-.. M,10)) is an e-alternant of « and 5. On the other hand, if 0 <
i@« — b = dist(e, X,), we see from 4.3 that there exists a min(3| « — b/,
€)-alternant, which is also clearly an e-alternant, of « and .

Now suppose the given condition holds, and also that |« — b > dist
(. X.). Choosingp e X,sothat! « — b' > & —p ,weset

a=Mla—bi—vw—p)

and construct an x-alternant (j, (v; ..... 9,.2)) of « and b. Then, for each
k E{l,..., VT 2}.

(=D {p — b)) = (=D (p — «)op) + (1)Y= (a — bY(np)
:>—(1—p!%—,([——b — X
= x

= 0,

It follows that the polynomial p — b, of degree at most », has at least v — |
changes of sign. Thus p = b. and we obtain the contradiction |« — p'l =
i« —b' . Hence, in fact,! « — b = dist(«, X,). |

5. EXISTENCE OF MINIMAX POLYNOMIAL APPROXIMATIONS

Having characterized minimax polynomial approximations, we now show
how they can be constructed. In order to apply 2.2. we need a lemma on the
location of roots of a polynomial.

S.1. LEMMA. Let n be a positive integer, cc R, ' ¢ > 0. Let &, ...., £, be
complex numbers such that T],_, (x — €)Y € R for each xe R. Let (n, .....
Nn_y) be a strictly increasing sequence of n — 3 points of R, and suppose that
.m; — Re & | > 0 whenever je{l....n — 3} and ke {l1...., n..
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Then

there exists s il,...n 24 such that (—1) c¢[Ir(x — &) =0
for each x €[, ;4] and Re €, € [, . n.4] for each re{l,...,nl. (%)

Proof. For convenience, let
px) = c[[(x—&) (xeO)
r=1

There are two main steps in the proof.

5.1.1. Letie{0,...n), k{0...., n — i). Suppose that In; , npripa] contains
Re &, for exactly i distinct values of r; and that, in the case i > 1, Re £, €
Mesr « Degrpal Sforr = 1,..., i. Then (™) obtains.

Indeed, as [7;., 9:.4] is at positive distance from each Re &, , there exists
j €10, 1} such that (—1) p(x) > 0 for each x in [7, , 7;4,]. In the case i > 1,
as the numbers Re &, (r = l..... i) are distinct, and there are no other roots of
pin [0y, iyl wWe see that & ..., € are distinct real roots of p, and that the
sign changes of p in [7, , 7,_;,.] occur precisely at these roots. Thus

(=D p(x) =0 gy <X K Ypeyigo)-
It is clear that this inequality also holds for i = 0. It only remains to set

s=k if k + jis even.
s=k-i-+1 if kK — jis odd.

5.1.2. Let i, k, A be integers withO < A <i<n 0<k<n—1i and
suppose that Re &, € [, , Miwia) fOr exactly X distinct values of r. Then (*)
obtains.

As the case A = 0 follows from 5.1.1, we may assume that A > 1. Let
m e {l,..., n}, suppose we have proved 5.1.2 fori = 0,..., m — 1, and consider
the case / = m. If any of the Re £, belongs to [n; . 7,_4], then there are at
most m — | distinct values of r with Re &, € [9,21, Qramsal, @and so (%)
obtains. With s €{0...., A — 1}, suppose that [»,. . %,,..1] contains Re ¢, for
exactly s distinct values of r; and that, if s > 1, each of the intervals [,
Negre1] (1 < £ << 5) contains Re €, for exactly one value of r. If [, ..y,
Nrrseo] contains none of the Re £,, we have exactly s distinct values of r
with Re &, € [, 94 e22), from which (*) follows. If Re €, € [mraei1 > Mrpses)
for more than one value of r, then there are at most A — s — 2 distinct
values of r with Re &, € [1155.2 » Mr2a42), and we again have (*). It now follows
by induction on s that either (*) holds or, after suitable reindexing of the £, .

Re gr € [nl:—LT s nI:Ai‘fl] (r = ls"'a A)
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From this, we immediately obtain (*) by an application of 5.1.1. This com-
pletes the inductive proof of 5.1.2. That of 5.1 is now completed by taking
i=nin512. |}

We now reach the end of the search for a constructive proof of the existence
of minimax polynomial approximations.

5.2. THEOREM. FEach element a of C[0, 1] has a minimax approximation b
in X, that is unique in the sense that, if pe X, and { p — b | > 0, then |« —
p.> a—b|.

Proof. Let p, g belong to X,, with ||p — g . > 0. In view of 2.2, it will
suffice to prove that max(iz — pll,| « — q}) > dist(e, X,). We proceed
by induction on v. If v = 0, let M, m be respectively, the sup, inf of « over
[0, 1]. Without loss of generality, we may take p > ¢. Then either p >
(M - m), in which case

la—p >p—m>HM —m);
or (M — m) > g, when
le —qi >M —q>3(M—m).
As M +mye X, and |' @« — ¥(M +— m)|| = {(M — m), it follows that
max(fe —pi, la —ql) > (M — m) = dist(e, X)).

Now let n be a positive integer, suppose we have proved the Proposition
for v = 0,..., n — 1, and consider the case v = n. As

la —pli-Fia—qiz=ip—ql >0,

we may assume that |« —g! > 0. If p(x) = Tr_o pex* and g(x) = Sr_p
q.x*, then

v—1
oy —aq | =1Y (pe—ag)x*[ =lp—gql >0
k=0

so that either | p, — g, > Oor i}:’,}:, (pr — qp) x*|! > 0. In the latter case,
by our induction hypothesis, we have either

v—-1
le—gqll =] a—gx — 3 gx*}
k=0

> dlSt(d — g,X"% Xv—l)

> dist(«, X,);
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or, as we may suppose.

oo
v —qgx — Y pxt dist(e — gL X ).

AN

Then either , p. — ¢, .-0: or

v-1
Pe— 94, L a — ¢\ — Z pl.'-\.’.. LT diSt((’ — q.x". Xl 1).

L=0

in which case

v -1
a—piFia—qx — ) pxt o~ po— g,

L==0

odist(e — g0l XL )
- dist(e. X))

It is now clear that we may assume that . p, — ¢, - 0.
With 8 a modulus of uniform continuity for « — ¢ on [0, 1], we set

B35 « —q ).

Ho=1r p.—(, 181717
e=min(} o« —q .pudlia« — q.)06).

Then B 2-0.p 2~ 0, € > 0. By 4.3, either « — ¢ - dist(«. X,) or, as we
may assume. there exists an e-alternant (/, (7; ..... 7,.2)) of « and ¢.

We now observe that it will suffice to find ke {l...., 1 = 2! such that
(=D 7 (p — q)n;) < —e. For then

«—p == (— 1)+ (e« — p)(")k,)
= (=D (o — @Mop) — (=D (g — p)a,)
o —-q!—¢€—c¢€

=« —q

and therefore « — p ' ~- dist(«, X)).
As either

..... =D p — g)() < —e

or
ming,_y o — D7 (p — @)op) - —2e,

we clearly may assume the latter. For convenience, we also take j == 0. the
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case j = | beingsimilar. If » == |, and o € {0, 1} ischosen so that | p;, — ¢, ; =
(=1 (pr — q1), then

1P Y= D) = 0 (P - g)(ma) + GO = ) (et — 1)
<2e—"py—q, . 8( «a—q )

< —€,

and our proof is complete.
We now take v > 1, and observe that, by [I. Chap. 5, Theorem 8]. there
exist complex numbers &, ...., ,_, such that

v—1

(P—a)x)=up,—q) [[(x—£) (xel0, 1]
r=1
Note also that (p — q) (x)| = u whenever min,_, _,, x— & | =B As
« — q is uniformly continuous, we may assume that 7, — Re§,| >0
whenever je{l...,» + 2} and ke{l,.,v — 1}. By 5.1, there exists se
{l,...,v =+ 1} such that (—1)*(p — ¢)' (x) > 0 for each x¢€[n,,n,,] and
Re &, € [y, .7s.,] for each ref{l...., v — 1}. For each such r and each x in
[, + B. 9.y — Bl, we then have , x — £, = 'x — Re§, i = 8. Thus

(=" p — g)n.0) = (=D (p — g)nd
B M =0 T
(| =1 =] )= —9wdx

0B e o1

NN

< 2e — ' wdx
Jnep
= 2¢ — ey — 1 — 28)
<2 — pd(' @« — g
= —&€.

This completes the proof. [

6. LipscHITZ CONDITIONS ON THE MINIMAX APPROXIMATION MAPPING

Let P, be the mapping which carries an element ¢ of C[0, 1] to the unique
element P ¢ of X, such that| ¢ — P! = dist(¢. X,). Our aim is to prove
that P, is locally Lipschitzian on C[0, 1] — X, (6.3 below).

6.1. LeMMma. Let pe X, . e -0 and 2 > 0. Let xy,..., x,_; be points of
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[0, 1] with min,_, . (x,_y — X)) 7~ and suppose thar  p(x.) - ¢ for cach
kin{l....v - 1. Then

-1
P [T K= i — ke
L1
Proof. For each x in [0, 1], we have

PO = Y L) ply),

where

v—-1 11
Li(x) = ( 1 &— .\(;))/ [T (xi— x5 k =1,...,v+ 1.

\J=1,j#k s i=1,j%h

The lemma follows from this and the inequality

v—1
Ly <1/ [] + k—jl<lja(k—Diw—k+ D!,

U E NS

valid fork =1,...,v + 1. |

6.2. LEMMA. Let o > 0, and let 7 ,..., n,,» be points of {0, 1] such that
Nee1 — Y = x for each k in {1,...,v = 1}. Then there exists ¢ > 0 such that
Wp, < ce whenever € > 0, pe X, and (—1)* p(x;) > —e for each k in {l....,
v 4+ 2.

Proof. Let € >0,pe X, and (—1) p(n,;) > —e for each k in {l,..,
v =2} If v =0, then

—e < p(ny) = p(ny) < e

so that 'p < e, and we can take ¢ = 1.

Now let 1 be a positive integer, suppose we have proved 6.2 for v = 0,...,
n — 1, and consider the case v = n. Writing p(x) = ¥,_, p,X", we have either
|p, > 0or p,| < e Inthe latter case, for each ke {l,....v - 1},

v—1

(—1* z pei” = (=D p(nz) — popi®)

r=0

“—e—ip, .

By our induction hypothesis, there exists ¢’ > 0 (¢’ independent of p and ¢€)
such that | Y_¢ p,x" " < ¢'(2€); whence

v—1

Iplh <Y px™ +1p." < (2" = De.

r=0

It is now clear that we may assume that ! p,, > 0.
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If v = 1, and j €{0, 1} is chosen so that ; p; , = (—1) p, . then (—1) p is
increasing in [0, 1]; so that
—e < (—=1Y p(n;) <(=1Y p(n;) < e
Thus p(n;); < e. p(n;4)i < e. The result in this case now follows from 6.1.

We now take » > 1 and compute &, ..., §,_; in C so that

P —wp [[(x—&)  (xe[o. 1.

r=1

As p is uniformly continuous on {0, 1}, we may assume that | n; — Re £, >0
whenever je{l...,v — 2} and ke{l...,v — 1}. By 5.1, there exists se
{1,..., v + 1} such that (—1)* p'(x) > 0 for each x in [7,, n,,]. Thus, for
each such x,

—e < (=D p(n,) < (=1Y plx) < (=1 p(n._)) <e

and therefore | p(x), < e. Applying 6.1 to the points . — kv~ n., — n,)
(k = 0..... v). we obtain ! p' < ce with

'l"l A
e = 1“'v"(z Lk — )i — k — D). I
V=1
6.3. THEOREM. Let « = C[0, 1]. with « — P,a} > 0. Then there exists
¢ > 0 such that
Pa —Pa' <ctra —a-

for each «' € C[0, 1].

Proof. Given 2 €10, « — P,ali[, we construct an x-alternant (/. (%, ,...,
1,_5)) of « and P,« (4.4). and observe that. for each k e {l..... v - 2},

D (Poa’ = Poa)(ny)
= (1Y (o= Pya)p) + (D7 (Pa’ = aYop) — (1Y (a” = a)(ny)
> dist(e, X)) — x—dist(e’, X)) -7 «' — @
>=2"e —a -2

If & is a modulus of uniform continuity for « — P« on [0, 1]. our choice of
a ensures that

7’1.+l_nk}?8(i”_Pv”i) (k:l-,---«l’-])-
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Thus (6.2) there exists ¢ 0 (¢ depending on «. but independent of + and «~')
such that

P‘/I' — Pv” 1,((2 ”, — ,\).
As 1= ]0. « — P« [1is arbitrary. we have
PI//' — _P;,(/ e //' —_ . ((I’ [ C[O, ]]) I

Remark. From 6.3, we obtain a particularly simple proof of the pointwise
continuity of P, on C[0. 1}. Given « = C[0, 1] and ¢ - -0, we have either
te — P - ieor0 -2« — P . Inthe former case. if « < C[0.1] and
"o —« = le. then

o — P odist(e’. X))
o — o« -— dist(a. X,)
< Je,
whence

PL,(r' — P;u P:"’ —a = d = =g = P,,(I . < €,

On the other hand, if 0 < .« — P.« . then. computing ¢ - 0as in 6.3, we

have 'P.«" — P,o <. e whenever «" = C[0. [Jand « — «' < ¢7le.
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